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A. H. HIRSA2 AND P. H. STEEN1

1School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
2Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy,

NY 12180, USA

(Received 3 November 2006 and in revised form 15 February 2007)

Centre-of-mass motions of two coupled spherical-cap droplets are considered. A model
with surface tension and inertia that accounts for finite-amplitude deformations is
derived in closed form. Total droplet volume λ and half-length L of the tube that
connects the droplets are the control parameters. The model dynamics reside in the
phase-plane. For lens-like droplets λ< 1, and for any L there is a single steady state
about which the droplets vibrate with limit-cycle behaviour. For λ> 1, the symmetric
state loses stability (saddle point) and new antisymmetric steady states arise about
which limit-cycle oscillations occur. These mirror states – big-droplet up or big-
droplet down – are also stable. In addition, there are large finite-amplitude ‘looping’
oscillations corresponding to limit cycles that enclose both steady states in the phase-
plane. All three kinds of oscillations are documented in an experiment that sets the
system into motion by ‘kicking’ one of the droplets with a prescribed pressure-pulse.
Model predictions for frequencies are consistent with observations. Small-amplitude
predictions are placed in the wider context of constrained Rayleigh vibrations. A
model extension to account for the small but non-negligible influence of viscosity is
also presented.

1. Overview
Liquid droplets tend to spherical shapes under the action of surface tension. The
vibration of a sphere is a classical example of the competition between liquid inertia
and capillarity. As summarized by Lamb (1932), Lord Rayleigh (1879) predicted the
frequency of small oscillations (mode n),

ωn
2 = n(n − 1)(n + 2)(σ/ρr3), (1.1)

where σ , ρ and r are surface tension, liquid density and radius of the undeformed
sphere, respectively (see also Webb 1880). The frequencies ω0 = 0 and ω1 = 0 are
due to translational invariance and the constant-volume constraint, respectively. The
lowest non-zero frequency ω2 plays an important role in applications. The prediction
of Rayleigh has been verified in experiment and its relevance well-documented (e.g.
Trinh & Wang 1982 and Bisch, Lasek & Rodot 1982).

Suppose that the Rayleigh droplet is now constrained by pinning it on a circle of
contact (figure 1a, b). How will the constraint influence the frequency of oscillation?
Will it go up or down? A reasonable answer might be that the constrained droplet will
oscillate faster, just as a shorter violin string has higher pitch. This reasoning and the
conclusion would be correct if one restricts to a fixed mode; that is, pinning the surface
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Figure 1. Pinning along a circle-of-contact (dotted line) varies in position from (a) the
equator (V1 − V2 = 0) to (b) the southern hemisphere (V1 − V2 < 0).
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Figure 2. Schematic of coupled droplets pinned at tube ends of radius r . V1 and V2 are
protuding volumes. Typical equilibria for (a) V1 + V2 < (4/3)πr3 and (b) V1 + V2 > (4/3)πr3.
Equilibrium occurs for menisci with equal curvatures, R1 = R2.

increases the frequency for any particular mode. On the other hand, if all modes are
allowed, the situation is not so straightforward. It turns out that pinning can ‘activate’
the translational mode, raising its frequency from zero and introducing a slow oscilla-
tion. The slow frequency ω∗

2 depends on where the pinning circle is placed (figure 1).

We report below (the L =0 limit of (4.1)) that ω∗
2/ω2 =

√
3(y − 1/y)/4 where y � 1 is

the distance from the north pole to the constraining circle scaled by the radius of the
constraint (figure 1b). Thus, the slow frequency increases monotonically from zero
for a pinned-equator constraint (figure 1a) to infinity for a pinned point at the south
pole. In particular, the translational-mode frequency crosses the unconstrained slow
frequency (ω∗

2/ω2 = 1) at yc ≡ (2 +
√

7)/
√

3 ∼ 2.68. Hence, according to our model,
the correct answer depends on where the pinned constraint is placed. The emergence
of a linear, low-frequency centre-of-mass oscillation in a related problem has been
reported by Strani & Sabetta (1984). The translational mode introduced by the pinned
circular constraint has not been studied before, however, as far as we are aware.

The above geometry-of-constraint is generalized in two ways in our study. First,
two sub- or super-hemispherical caps can be joined at the constraining circle giving
a non-spherical overall shape. Second, the pinning circle can be ‘inflated’ to be a
cylindrical tube of length 2L with spherical caps pinned to each of the tube ends
(figure 2). This family of undeformed capillary surfaces is characterized by two
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control parameters: the sum of spherical-cap volumes (V1 + V2) and the connection
half-length L. Figure 2 shows symmetric and antisymmetric equilibria (inter-droplet
pressures equal) distinguished by V1 + V2 < (4/3)πr3 (figure 2a) or V1 + V2 > (4/3)πr3

(figure 2b).
The translational motion of the droplet–droplet system is modelled by restricting

to spherical-cap shapes. The benefit of this approximation is that finite-amplitude
dynamics become tractable. The motions are described by a two-dimensional system
while Rayleigh’s infinitesimal motions are described by a partial differential equation.
For the purposes of this paper, the validity of the approximation is tested by
comparing with experiment.

Motivation for this study comes from practical applications. Two pressure-coupled
droplets have a double-welled surface energy landscape. With a mechanism to trigger
from one well to another, such as with an electro-osmotic pump placed in the tube
(Vogel, Ehrhard & Steen 2005), the system becomes active. A number of applications
that exploit capillary bi-stability are under development. These include optical micro-
lens devices (López, Lee & Hirsa 2005). For these, understanding the dynamics of the
droplet–droplet configuration and especially the lowest frequency mode is important.

Droplet motions dominated by inertia and surface tension are generally also
influenced by liquid viscosity. Even though the Reynolds number is order one
hundred, viscous effects are non-negligible according to experiment. The proposed
inviscid model of the translational-mode dynamics is readily modified to include
viscous damping.

2. Dynamical model
Let zc be the centre-of-mass for the total liquid volume (figure 2), in the tube and

both droplets, VT = V0 + V1 + V2. Newton’s law takes the form

d

dt

(
ρVT

dzc

dt

)
= Fσ + Fµ. (2.1)

Owing to axisymmetry, the net force F = Fσ + Fµ acting on the control volume is
in the axial direction, F e =

∫
∂VT

Tn dA, where T = −p1 + 2µD is the stress tensor,
µ is the viscosity, D the symmetric part of the velocity gradient tensor, e the axial
unit vector and n the unit normal. The net force splits into a capillary Fσ and
a viscous part Fµ according to the split between pressure and deviatoric stress
using the assumption of a stress-free liquid/gas interface. The pressure contribution,
from the spherical-cap droplets of radius Ri , is evaluated by the Young–Laplace
relationship, pi = 2σ/Ri for i = 1, 2, to yield Fσ = πr2(p1 − p2) = 2πr2σ (1/R1 − 1/R2).
The viscous part arises due to tractions along the tube wall ∂V0 and can be written
Fµ =2µ

∫
∂V0

eDn dA= 2µ(4πrL/τ )f where f is the dimensionless viscous force and
τ a characteristic time scale. It is convenient to scale all lengths with r , volumes
with (4/3)πr3 and to choose a time scale to balance the inertia and capillary terms,
τ 2 ≡ ρr3/σ . Henceforth, unless otherwise noted, variables will be dimensionless. We
will use the same symbol for scaled as for previously unscaled variables. Substitute
forces into (2.1), use the scales just defined, and rearrange to find

d2

dt2

(
VT zc

)
− 3

2

(
1

R1

− 1

R2

)
= 6Re−1Lf, (2.2)

where Re−1 ≡ (µ/ρ)(ρ/rσ )1/2 represents the ratio of viscous to inertial forces.
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Inviscid behaviour dominates the dynamics and we put Re−1 = 0 for now in order
to obtain a closed-form equation for the dissipationless motions. Viscous effects are
discussed in § 4. The magnitude of the centre-of-mass for each droplet zi has a closed-
form expression in terms of droplet height hi and length L, zi = L+(1/2)hi(2+h2

i )/(3+
h2

i ). Droplet radii are given by 2Ri = (hi + 1/hi) and volumes by Vi = (1/8)hi(3 +
h2

i ) (figure 2). System centre-of-mass is related to component centre-of-mass by
zcVT = −z1V1 + z2V2 where the tube volume drops out since its centre-of-mass stays
fixed at z =0. Substituting these relationships into (2.2), two second-order systems,
each in terms of dependent variables h1 and h2, emerge. In view of the constant-
volume constraint, h1 and h2 are not independent and therefore the more convenient
variables are (Θ, λ) ≡ (V1 − V2, V1 + V2). In order to express (2.2) in terms of (Θ, λ),
mappings between coordinate pairs (h1, h2), (V1, V2) and (Θ, λ) are needed. The first
mapping is nonlinear (everywhere invertible, though) and the second linear. Indeed,
one can build the functions

h1 = H1(Θ, λ), h2 = H2(Θ, λ) (2.3)

from the inverse hi = hi(Vi) of the cubic expression above; explicitly, h = [4V + (1 +
(4V )2)1/2]1/3 + [4V − (1 + (4V )2)1/2]1/3. In summary, (2.2) can be rewritten

d

dt

(
A(Θ; λ, L)

dΘ

dt

)
+ C(Θ; λ) = 0, (2.4)

where

A(Θ; λ, L) ≡ (H1 + H2 + 3L), (2.5)

C(Θ; λ) ≡ 9

(
(H1 − H2)(1 − H1H2)(

H 2
1 + 1

)(
H 2

2 + 1
)

)
. (2.6)

The rate of volume redistribution dΘ/dt is multiplied by A, which accounts for the
influence of tube length and spherical-cap geometries on the centre-of-mass of
the system. Note that parameter L appears only in function A and serves to tune the
strength of inertia. The function C represents the restoring force corresponding to a
single- or double-well potential depending on whether λ< 1 or λ> 1, respectively.

2.1. Phase-plane solution

The phase-plane is organized by the equilibria which depend on λ. Equilibrium
solutions of (2.4) are the zeros of C(Θ; λ) and can be read off as H1 = H2 and H1H2 = 1.
The null solution of symmetric shapes bifurcates into the family of antisymmetric
shapes at λ= λhs ≡ 1 where shapes are hemispherical (hs),

branch 1 (H1 = H2) : Θ∗
1 (λ) = 0 for all λ,

branch 2 (H1H2 = 1) : Θ∗
2 (λ) = ±

(
λ2 − 3

4
λ2/3 − 1

4

)1/2

for λ � 1.

The pitchfork bifurcation is plotted in figure 3. (Measured steady shapes compare well
to the pitchfork prediction (Vogel et al. 2005).) Two representative phase-plane plots
show the finite-amplitude behaviour. Below λhs , a family of limit cycles surrounds
the symmetric steady state (null solution), corresponding to finite-amplitude periodic
oscillations. Above λhs , the null solution becomes a saddle point. Small but finite-
amplitude initial displacements from either the up or down equilibrium state again
result in limit-cycle oscillations about that state. However, large disturbances lead to
looping solutions where the system volume oscillates between being predominantly
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Figure 3. (a) Bifurcation diagram with typical equilibrium shapes sketched. Typical
phase-plane solution for (b) λ< 1 (λ=0.70) and (c) λ> 1 (λ= 1.6).

above or below the tube mid-plane. The trajectories from the saddle point at Θ =0
define the separatrix, separating initial conditions that lead to looping solutions
from those for which Θ(t) does not change sign. This qualitative behaviour can be
ascertained using stock phase-plane tools (e.g. Minorsky 1962). The solutions plotted
in figure 3 were computed using a standard ODE solver (MATLAB). The phase-plane
is qualitatively like that of the two-point attractor with quadratic energy wells (e.g.
Thomson & Hunt 1986).

Linearizing (2.4) about a steady state in the standard way gives, A∗d
2Θ/dt2 +

C∗Θ =0 where A∗ and C∗ are coefficients that depend on λ through Θ∗
i , i = 1, 2.

Eigenvalues can be read off as ±
√

C∗/A∗. Along branch 1 and for λ< 1, the eigenvalues
are a complex conjugate pair ±iω∗

1 with values (using the notation y ≡ H1 =H2)

ω∗2
1 =

24(1 − y2)

(y2 + 1)3(2y + 3L)
for y < 1. (2.7)

For this lens-like family, droplet apex y and total volume λ are related by λ= 1
4
y(3+y2).

For λ> 1, the eigenvalues ±γ ∗
1 are real, with values γ ∗2

1 obtained by replacing (1−y2)
by (y2 − 1) in (2.7). For the family of equilibria along branch 2 (upper), we use the
notation y ≡ H2 = H −1

1 . For these states, droplet height y and total volume λ are
related by λ= 1

8
(y + 1/y)3. The eigenvalues are complex conjugates ±iω∗

2 with values

ω∗2
2 =

12(y − 1/y)2

(y + 1/y)2(y + 1/y + 3L)
for y > 1. (2.8)
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Figure 4. (a) Dimensional vibration frequency ω∗
1 for λ< 1 and ω∗

2 for λ> 1 according to
linear theory (solid line) and compared to experiment (symbols). (b) Frequency of oscillation
for limit cycles of amplitude Θ scaled by the linear frequency ω0 ≡ ω∗

1. L = 1.1.

For the lower segment of branch 2, replace y by 1/y in (2.8) and restrict to y < 1 to
find the same eigenvalues, as must be the case. Note that at λ= 1 (y = 1) the system
has a double-zero eigenvalue. The frequencies ω∗

1 (for λ< 1) and ω∗
2 (for λ> 1) are

plotted in dimensional form as a solid line in figure 4. The data are discussed below.
Linear frequencies (2.7) and (2.8) could have been reported alternatively as functions
of λ rather than of y.

To summarize the linear behaviour, branch 1 is a centre below critical and a saddle
point above critical while the upper and lower segments of branch 2, equivalent by
symmetry, are centres. The transition at λhs does not depend on L. However the
magnitudes of the eigenvalues do, with large L corresponding to slower vibration
frequencies. That is, for large tube volumes, the capillary forces acting at the tube
ends have a smaller influence on the centre-of-mass of the system; capillarity takes
longer to restore shapes.

Although periods of oscillation for finite-amplitude limit cycles can be obtained
computationally from (2.4), an analytic expression is readily derived. To this end, a
first-integral of (2.4) can be written

1

2

(
A(Θ; λ)

dΘ

dt

)2

+ U (Θ; λ) = const ≡ E, (2.9)

where U (Θ) is obtained by quadrature,

U (Θ) =

∫ Θ

0

A(s)C(s) ds. (2.10)

It can be shown that the product of A(Θ; λ)C(Θ; λ) is an odd function of Θ which
leads to a U (Θ) that is even about Θ =0. Solving (2.9) for dΘ/dt , noting the
separability of the variables Θ and t , allows the period of oscillation T for a limit
cycle to be expressed in closed form,

T = 2

∫ Θ−

Θ+

√
A

2(E − U )
dΘ. (2.11)

Here Θ− and Θ+ are the minimum and maximum of Θ along the closed trajectory
in the phase-plane, respectively.
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Figure 5. (a) Experimental set-up for droplet system with a steady pressure bias in the lower
chamber and transient applied pressure pulse in the upper chamber. Images of the states when
the system is bi-stable where (b) is before and (c) is after a positive pulse P (t) is applied.

For oscillations symmetric about Θ = 0 (branch 1 with λ< 1 and the looping
solutions), Θ− = −Θ+ and expression (2.11) can be evaluated as the amplitude Θ ≡
Θ+ of the disturbance is increased. Figure 4(b) shows how the frequency changes
with amplitude for sub-hemispherical droplets. For finite-amplitude oscillations, the
restoring capillary force varies from soft to hard as λ is increased from 0 to 1.

3. Experimental results
The experimental set-up consists of a Teflon plate (1.82 mm thick) with a small

circular hole (0.83 mm radius) bored through, as depicted in figure 5(a). A micro-
syringe is used to feed water to control the volume of the droplets. Pinned contact
lines are maintained well as verified through image analysis. The plate separates
two pressure-controlled chambers. Gravity is weak relative to surface tension (Bond
number B ≡ ρgr2/σ ∼ 0.1) yet gravity has a non-negligible effect. It adds a hydrostatic
head to the bottom droplet to make its mean pressure greater and along the length
of both droplets it distorts the droplet shape from spherical. To counter the head,
a pressure bias in the lower chamber is applied. Further details of the experimental
set-up are given by Hirsa et al. (2005).

We begin by fixing the total volume of the droplet then slightly adjusting the
pressure bias to achieve an equilibrium state of zero volume difference. A micro-
stepper motor is then used to apply a pressure pulse in one air chamber to perturb
the droplet. The duration of the pressure pulse is less than 100 ms and only after this
time has elapsed are the data analysed. Figure 5(b, c) shows images of the bistable
droplet states at equilibrium.

Depending on the amplitude of the pulse, four different dynamical behaviours
are observed in experiments: (i) small vibrations about a static shape; (ii) bi-stable
oscillations that toggle up, down and so forth n-times before coming to rest (up to
n= 5); (iii) deformations that blow the liquid completely out of the tube and (iv)
deformations where some liquid is left in the tube with the rest breaking off as a
satellite droplet. A high-speed video camera is used to capture the droplet motions
(Redlake MotionPro HS2-C-4). For large pressure pulses the initial shape deviations
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Figure 6. Phase-plane plots of experimental data as single frames (dots) and as time-averages
over many frames (solid curves): (a) for a large disturbance that causes a toggle from
droplet-down to -up (λ=1.2) and a solution of the viscous model (dashed curve) starting from
initial condition of comparable magnitude (displaced for decay to the opposite equilibrium,
for clarity); (b) for a small disturbance that causes vibration about the steady state (λ=0.4)
where the centre is slightly off-set from Θ = 0 due to imperfect countering of gravity by the
pressure bias.

of the droplets are not spherical caps (higher capillary modes are excited). However,
later in the large-pulse decay and for the entire decay to equilibrium of small pulses,
the spherical-cap assumption holds reasonably. Image capture with edge detection
gives the droplet volumes and thereby the reported Θ and λ from experiment.

Time traces Θ(t) show damped oscillations. The role of dissipation is clearly
seen in the experimental phase-plane plot corresponding to case (ii), figure 6(a).
The under-damped nature of the oscillation is evident for the small-disturbance
case (i), figure 6(b), where a large number of vibrations occur before the droplet
settles to equilibrium. For these, by fitting to exp(iωt) exp(−δt) (dimensional), it is
straightforward to extract the frequency ω from the trace. Frequencies are plotted in
figure 4(a) with an experimental uncertainty of a few per cent. Damping rate δ can
also be extracted but has a greater relative error, as dissipation is a lower-order effect.
For completeness, we report that the damping δ ∼ 20 s−1 is found to be constant to
within 15% over the λ range. Setting δ =(µ/ρ)/	2

ν and solving for the viscous length
scale gives 	ν ∼ 0.2 mm.

4. Discussion
The dynamics of a capillarity-generated centre-of-mass mode has been considered

in a number of contexts, including the pendant free droplet (DePaoli et al. 1994)
and the sloshing of liquid mass in a cylindrical tube (Bian et al. 2003). Strani &
Sabetta (1984) considered a droplet in contact with a solid spherical-cap support –
not unlike the contact that a ‘golf tee’ makes with the ball – and made a detailed
comparison with Rayleigh oscillations. The droplet was surrounded by a second liquid
(immiscible). The equations that Rayleigh solved were augmented with appropriate
boundary conditions for the contact. They found that all the Rayleigh frequencies
were modified. In addition, the constraint introduced a new low-frequency mode.
This mode tends to a zero-frequency rigid displacement as the contact diminishes
and tends to infinite frequency as the contact envelopes the entire surface. Hence,
there is a cross-over for Strani & Sabetta’s problem. Indeed, to the extent they can be
compared, all our linear frequency results are qualitatively consistent with Strani &
Sabetta’s. An important difference is that their hemispherical meniscus has non-zero
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frequency. This is due to the asymmetry of the constraint and precludes a quantitative
comparison.

The linear frequencies we report reflect a balance between inertia and the capillary
restoring force, as modified by the constraint. Increasing L generally increases the
inertia of the system and decreases the oscillation frequency, as illustrated by the
linear results (2.7) and (2.8). In particular, for lens-shaped interfaces on a tube (2.7),
in the limit of planar shapes λ → 0, the restoring force is constant and inertia controls
the frequency, ω∗2

1 → 8/L. The dependence on λ is more subtle. As λ increases, the
frequency monotonically decreases to zero at the hemispherical state. In fact, all
constrained hemispherical shapes λ= 1 have zero linear frequency. The reason for
this is that the potential-well is flat to second-order at this state – it transitions here
from concave-up to concave-down along the family of symmetric states. Along the
antisymmetric family (2.8), the linear frequencies increase from zero, at λ=1, reach
a maximum and then decrease back down to zero, as λ → ∞. The maximum is
an artifact of the scaling, however (relative to inertia, capillarity decreases due to
increasing volume). Indeed, rescaling by ω2, cf. (1.1), shows a monotone increasing
frequency from the hemispherical shape, according to

(ω∗
2/ω2)

2 =
3

16

(y + 1/y)(y − 1/y)2

(y + 1/y + 3L)
for y > 1. (4.1)

Hence, there is only one λc below which the constrained sphere (L = 0) has lower
frequency than the unconstrained one (same volume). The value yc ∼ 2.68, reported in
§ 1, corresponds to λc ∼ 3.55 and we see that all the measured frequencies are below
the lowest Rayleigh frequency (figure 4a).

Scaling ω∗
1 with the Rayleigh frequency ω2 corresponding to the same volume yields

(ω∗
1/ω2)

2 =
3

4

y(y2 + 3)(1 − y2)

(y2 + 1)3(2y + 3L)
for y < 1. (4.2)

Note that, in this scaling, the limit λ=0 is a singular limit due to the vanishing of
the scaling volume. This form may nevertheless be useful to the practitioner.

Finite-amplitude oscillations can have frequencies that are higher or lower than
their linear counterparts, as predicted in figure 4(b). The softening/hardening can be
understood in terms of the nonlinearity of C(Θ) (2.6) which shows softening-spring
behaviour for smaller volumes and hardening for volumes nearer hemispherical.
Alternatively, the effect can be seen in the potential U (Θ) (2.10) and how its landscape
changes with λ.

So far, the relevance of the model is based on comparison to measured frequencies.
Linear frequencies are in quantitative agreement over a decade of volumes (figure 4a).
The range of volumes tested in experiment is limited by the contact pinning. As we
shall now explain, it turns out that measured viscous dissipation is also consistent
with (2.2) written in terms of Θ; that is, with the viscous extension of (2.4),

d

dt

(
A(Θ)

dΘ

dt

)
+ C(Θ) = 18Re−1Lf

(
dΘ

dt
, Θ

)
. (4.3)

In contrast to A and C, the dependence of f on Θ and dΘ/dt is not known.
Nevertheless, for the linearized version of (4.3), which governs the decay of small-
amplitude disturbances, there is only a single unknown coefficient f∗,

A∗
d2Θ

dt2
+ C∗Θ − 18Re−1Lf∗

dΘ

dt
= 0. (4.4)
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The damping of (4.4) can be fitted to the measured δ ∼ 20 s−1 (§ 3) to find f∗ ∼ 3.4.
A criterion for neglecting viscous effects emerges: that the coefficient of the damping
term be small relative to that of the inertia term in (4.4) requires Re � 60L/A∗.
For the range of λ where there are measurements, A∗ ∼ 5, and the criterion becomes
Re � 13. For water and our tube size, Re ∼ 240, suggesting that inertia dominates but
that viscous effects are nonetheless non-negligible – all consistent with observation.

Viscous influence has been measured in the context of small disturbances from
equilibrium. In an ad hoc fashion, we now replace the nonlinear viscous force in
(4.3) with the linear term 18Re−1Lf∗dΘ/dt . That is, the nonlinear evolution equ-
ation (2.4) is generalized to include linear viscous effects. This damped nonlinear
ODE is solved starting from an intial condition comparable in magnitude to that
for the experiments to obtain the trajectory seen in figure 6(a). To sum up, not
only does the finite-amplitude behaviour exhibit dynamics in qualitative agreement
with the inviscid model (figure 6), but the influence of dissipation is also captured
(with no free parameters) by a linear damping term with coefficient measured from
small-amplitude data.

In comparing experiment to model, the neglect in the latter of (i) gravity,
(ii) deformations that are not spherical-shaped, and (iii) viscosity are the three most
significant idealizations. Viscous effects (iii) have just been discussed. Regarding (i),
the pressure bias applied in the experiment serves to adjust the position of the zero-
reference for the hydrostatic head but does not eliminate shape distortions due
to gravity. Including gravity as a perturbation from zero Bond number would be
a straightforward extension – one that might destroy much of the simplicity of the
present model, however. Regarding (ii), the restriction to spherical-cap deformations is
reasonably valid for small disturbances. For large pressure pulses, the droplets clearly
deform from spherical shapes and can take the form of pendent drop oscillations,
similar to those reported in Basaran & DePaoli (1994). These higher-frequency
secondary vibrations may influence how fluid is exchanged between the droplets.
However, these modes quickly dissipate (usually within the duration of the pressure
pulse, 100 ms) and the spherical-cap shapes are recovered.

In summary, the different dynamics predicted by a capillarity/inertia model with
spherical-cap deformations are faithful to observation. Viscous damping (included as a
model extension) and non-spherical shapes are lower-order effects for the parameters
considered.

NASA NAG3-2713, -2714, NSF DMI-0500311, -0500408, ARO and DARPA are
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